Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback Design for Devising Optimal Epidemic Control Policies (2211.11258v2)

Published 21 Nov 2022 in math.OC, cs.SY, eess.SY, and math.DS

Abstract: This paper proposes a feedback design that effectively copes with uncertainties for reliable epidemic monitoring and control. There are several optimization-based methods to estimate the parameters of an epidemic model by utilizing past reported data. However, due to the possibility of noise in the data, the estimated parameters may not be accurate, thereby exacerbating the model uncertainty. To address this issue, we provide an observer design that enables robust state estimation of epidemic processes, even in the presence of uncertain models and noisy measurements. Using the estimated model and state, we then devise optimal control policies by minimizing a predicted cost functional. To demonstrate the effectiveness of our approach, we implement it on a modified SIR epidemic model. The results show that our proposed method is efficient in mitigating the uncertainties that may arise in epidemic monitoring and control.

Citations (1)

Summary

We haven't generated a summary for this paper yet.