Papers
Topics
Authors
Recent
2000 character limit reached

Understanding the double descent curve in Machine Learning (2211.10322v1)

Published 18 Nov 2022 in cs.LG

Abstract: The theory of bias-variance used to serve as a guide for model selection when applying Machine Learning algorithms. However, modern practice has shown success with over-parameterized models that were expected to overfit but did not. This led to the proposal of the double descent curve of performance by Belkin et al. Although it seems to describe a real, representative phenomenon, the field is lacking a fundamental theoretical understanding of what is happening, what are the consequences for model selection and when is double descent expected to occur. In this paper we develop a principled understanding of the phenomenon, and sketch answers to these important questions. Furthermore, we report real experimental results that are correctly predicted by our proposed hypothesis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.