Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phenotype Search Trajectory Networks for Linear Genetic Programming (2211.08516v2)

Published 15 Nov 2022 in q-bio.PE and cs.AI

Abstract: Genotype-to-phenotype mappings translate genotypic variations such as mutations into phenotypic changes. Neutrality is the observation that some mutations do not lead to phenotypic changes. Studying the search trajectories in genotypic and phenotypic spaces, especially through neutral mutations, helps us to better understand the progression of evolution and its algorithmic behaviour. In this study, we visualise the search trajectories of a genetic programming system as graph-based models, where nodes are genotypes/phenotypes and edges represent their mutational transitions. We also quantitatively measure the characteristics of phenotypes including their genotypic abundance (the requirement for neutrality) and Kolmogorov complexity. We connect these quantified metrics with search trajectory visualisations, and find that more complex phenotypes are under-represented by fewer genotypes and are harder for evolution to discover. Less complex phenotypes, on the other hand, are over-represented by genotypes, are easier to find, and frequently serve as stepping-stones for evolution.

Citations (2)

Summary

We haven't generated a summary for this paper yet.