Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Factorization for Cache Optimization in Content Delivery Networks (CDN) (2211.08273v1)

Published 5 Oct 2022 in cs.NI

Abstract: Content delivery networks (CDNs) are key components of high throughput, low latency services on the internet. CDN cache servers have limited storage and bandwidth and implement state-of-the-art cache admission and eviction algorithms to select the most popular and relevant content for the customers served. The aim of this study was to utilize state-of-the-art recommender system techniques for predicting ratings for cache content in CDN. Matrix factorization was used in predicting content popularity which is valuable information in content eviction and content admission algorithms run on CDN edge servers. A custom implemented matrix factorization class and MyMediaLite were utilized. The input CDN logs were received from a European telecommunication service provider. We built a matrix factorization model with that data and utilized grid search to tune its hyper-parameters. Experimental results indicate that there is promise about the proposed approaches and we showed that a low root mean square error value can be achieved on the real-life CDN log data.

Summary

We haven't generated a summary for this paper yet.