Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatio-Temporal Attention in Multi-Granular Brain Chronnectomes for Detection of Autism Spectrum Disorder (2211.07360v1)

Published 30 Oct 2022 in q-bio.NC, cs.CV, and cs.LG

Abstract: The traditional methods for detecting autism spectrum disorder (ASD) are expensive, subjective, and time-consuming, often taking years for a diagnosis, with many children growing well into adolescence and even adulthood before finally confirming the disorder. Recently, graph-based learning techniques have demonstrated impressive results on resting-state functional magnetic resonance imaging (rs-fMRI) data from the Autism Brain Imaging Data Exchange (ABIDE). We introduce IMAGIN, a multI-granular, Multi-Atlas spatio-temporal attention Graph Isomorphism Network, which we use to learn graph representations of dynamic functional brain connectivity (chronnectome), as opposed to static connectivity (connectome). The experimental results demonstrate that IMAGIN achieves a 5-fold cross-validation accuracy of 79.25%, which surpasses the current state-of-the-art by 1.5%. In addition, analysis of the spatial and temporal attention scores provides further validation for the neural basis of autism.

Citations (3)

Summary

We haven't generated a summary for this paper yet.