Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian hierarchical modelling for battery lifetime early prediction (2211.05697v2)

Published 10 Nov 2022 in eess.SY, cs.LG, and cs.SY

Abstract: Accurate prediction of battery health is essential for real-world system management and lab-based experiment design. However, building a life-prediction model from different cycling conditions is still a challenge. Large lifetime variability results from both cycling conditions and initial manufacturing variability, and this -- along with the limited experimental resources usually available for each cycling condition -- makes data-driven lifetime prediction challenging. Here, a hierarchical Bayesian linear model is proposed for battery life prediction, combining both individual cell features (reflecting manufacturing variability) with population-wide features (reflecting the impact of cycling conditions on the population average). The individual features were collected from the first 100 cycles of data, which is around 5-10% of lifetime. The model is able to predict end of life with a root mean square error of 3.2 days and mean absolute percentage error of 8.6%, measured through 5-fold cross-validation, overperforming the baseline (non-hierarchical) model by around 12-13%.

Citations (4)

Summary

We haven't generated a summary for this paper yet.