Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HSGNet: Object Re-identification with Hierarchical Similarity Graph Network (2211.05486v1)

Published 10 Nov 2022 in cs.CV

Abstract: Object re-identification method is made up of backbone network, feature aggregation, and loss function. However, most backbone networks lack a special mechanism to handle rich scale variations and mine discriminative feature representations. In this paper, we firstly design a hierarchical similarity graph module (HSGM) to reduce the conflict of backbone and re-identification networks. The designed HSGM builds a rich hierarchical graph to mine the mapping relationships between global-local and local-local. Secondly, we divide the feature map along with the spatial and channel directions in each hierarchical graph. The HSGM applies the spatial features and channel features extracted from different locations as nodes, respectively, and utilizes the similarity scores between nodes to construct spatial and channel similarity graphs. During the learning process of HSGM, we utilize a learnable parameter to re-optimize the importance of each position, as well as evaluate the correlation between different nodes. Thirdly, we develop a novel hierarchical similarity graph network (HSGNet) by embedding the HSGM in the backbone network. Furthermore, HSGM can be easily embedded into backbone networks of any depth to improve object re-identification ability. Finally, extensive experiments on three large-scale object datasets demonstrate that the proposed HSGNet is superior to state-of-the-art object re-identification approaches.

Citations (9)

Summary

We haven't generated a summary for this paper yet.