Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Label Prompt Selection (2211.04668v1)

Published 9 Nov 2022 in cs.CL

Abstract: Natural language prompts have been shown to facilitate cross-task generalization for LLMs. However, with no or limited labeled examples, the cross-task performance is highly sensitive to the choice of prompts, while selecting a high-performing prompt is challenging given the scarcity of labels. To address the issue, we propose a Zero-Label Prompt Selection (ZPS) method that selects prompts without any labeled data or gradient update. Specifically, given the candidate human-written prompts for a task, ZPS labels a set of unlabeled data with a prompt ensemble and uses the pseudo-labels for prompt selection. Experiments show that ZPS improves over prior methods by a sizeable margin in zero-label performance. We also extend ZPS to a few-shot setting and show its advantages over strong baselines such as prompt tuning and model tuning.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Chonghua Liao (7 papers)
  2. Yanan Zheng (13 papers)
  3. Zhilin Yang (50 papers)
Citations (6)
Github Logo Streamline Icon: https://streamlinehq.com