Papers
Topics
Authors
Recent
2000 character limit reached

A review of TinyML

Published 5 Nov 2022 in cs.LG and cs.AI | (2211.04448v1)

Abstract: In this current technological world, the application of machine learning is becoming ubiquitous. Incorporating machine learning algorithms on extremely low-power and inexpensive embedded devices at the edge level is now possible due to the combination of the Internet of Things (IoT) and edge computing. To estimate an outcome, traditional machine learning demands vast amounts of resources. The TinyML concept for embedded machine learning attempts to push such diversity from usual high-end approaches to low-end applications. TinyML is a rapidly expanding interdisciplinary topic at the convergence of machine learning, software, and hardware centered on deploying deep neural network models on embedded (micro-controller-driven) systems. TinyML will pave the way for novel edge-level services and applications that survive on distributed edge inferring and independent decision-making rather than server computation. In this paper, we explore TinyML's methodology, how TinyML can benefit a few specific industrial fields, its obstacles, and its future scope.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.