Papers
Topics
Authors
Recent
2000 character limit reached

TinyML for Ubiquitous Edge AI

Published 2 Feb 2021 in cs.LG | (2102.01255v1)

Abstract: TinyML is a fast-growing multidisciplinary field at the intersection of machine learning, hardware, and software, that focuses on enabling deep learning algorithms on embedded (microcontroller powered) devices operating at extremely low power range (mW range and below). TinyML addresses the challenges in designing power-efficient, compact deep neural network models, supporting software framework, and embedded hardware that will enable a wide range of customized, ubiquitous inference applications on battery-operated, resource-constrained devices. In this report, we discuss the major challenges and technological enablers that direct this field's expansion. TinyML will open the door to the new types of edge services and applications that do not rely on cloud processing but thrive on distributed edge inference and autonomous reasoning.

Citations (33)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.