Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 472 tok/s Pro
Kimi K2 196 tok/s Pro
2000 character limit reached

Quantum Work Capacitances: ultimate limits for energy extraction on noisy quantum batteries (2211.02685v2)

Published 4 Nov 2022 in quant-ph

Abstract: We present a theoretical analysis of the energy recovery efficiency for quantum batteries composed of many identical quantum cells undergoing noise. While the possibility of using quantum effects to speed up the charging processes of batteries have been vastly investigated, In order to traslate these ideas into working devices it is crucial to assess the stability of the storage phase in the quantum battery elements when they are in contact with environmental noise. In this work we formalize this problem introducing a series of operationally well defined figures of merit (the work capacitances and the Maximal Asymptotic Work/Energy Ratios) which gauge the highest efficiency one can attain in recovering useful energy from quantum battery models that are formed by large collections of identical and independent elements (quantum cells or q-cells). Explicit evaluations of such quantities are presented for the case where the energy storing system undergoes through dephasing and depolarizing noise.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. G. Chiribella, Y. Yang, and R. Renner, Fundamental energy requirement of reversible quantum operations, Phys. Rev. X 11, 021014 (2021).
  2. P. Faist and R. Renner, Fundamental work cost of quantum processes, Phys. Rev. X 8, 021011 (2018).
  3. R. Alicki and M. Fannes, Entanglement boost for extractable work from ensembles of quantum batteries, Phys. Rev. E 87, 042123 (2013).
  4. F. Campaioli, F. A. Pollock, and S. Vinjanampathy, Quantum batteries, in Fundamental Theories of Physics (Springer International Publishing, 2018) pp. 207–225.
  5. D. Rossini, G. M. Andolina, and M. Polini, Many-body localized quantum batteries, Physical Review B 100, 115142 (2019).
  6. J. Joshi and T. S. Mahesh, Experimental investigation of a quantum battery using star-topology nmr spin systems, Phys. Rev. A 106, 042601 (2022).
  7. J. Liu, D. Segal, and G. Hanna, Loss-free excitonic quantum battery, The Journal of Physical Chemistry C 123, 18303 (2019).
  8. J. Q. Quach and W. J. Munro, Using dark states to charge and stabilize open quantum batteries, Physical Review Applied 14, 024092 (2020).
  9. S. Y. Bai and J. H. An, Floquet engineering to reactivate a dissipative quantum battery, Physical Review A 102, 060201 (2020).
  10. A. C. Santos, A. Saguia, and M. S. Sarandy, Stable and charge-switchable quantum batteries, Physical Review E 101, 062114 (2020).
  11. M. T. Mitchison, J. Goold, and J. Prior, Charging a quantum battery with linear feedback control (2020), arXiv:2012.00350 [quant-ph] .
  12. J. Liu and D. Segal, Boosting quantum battery performance by structure engineering (2021), arXiv:2104.06522 [quant-ph] .
  13. A. C. Santos, Quantum advantage of two-level batteries in the self-discharging process, Phys. Rev. E 103, 042118 (2021).
  14. F. T. Tabesh, F. H. Kamin, and S. Salimi, Environment-mediated charging process of quantum batteries, Phys. Rev. A 102, 052223 (2020).
  15. S. Zakavati, F. T. Tabesh, and S. Salimi, Bounds on charging power of open quantum batteries, Phys. Rev. E 104, 054117 (2021).
  16. G. T. Landi, Battery charging in collision models with bayesian risk strategies, Entropy 23, 10.3390/e23121627 (2021).
  17. K. Sen and U. Sen, Noisy quantum batteries (2023), arXiv:2302.07166 [quant-ph] .
  18. M. B. Arjmandi., H. Mohammadi, and A. C. Santos, Enhancing self-discharging process with disordered quantum batteries, Phys. Rev. E 105, 054115 (2022).
  19. S. Tirone, R. Salvia, and V. Giovannetti, Quantum energy lines and the optimal output ergotropy problem, Phys. Rev. Lett. 127, 210601 (2021a).
  20. M. M. Wilde, Quantum Information Theory, 2nd ed. (Cambridge University Press, Cambridge, 2017).
  21. J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018).
  22. S. Imre and L. Gyongyosi, Advanced Quantum Communications: An Engineering Approach, 1st ed. (Wiley-IEEE Press, 2012).
  23. A. S. Holevo and V. Giovannetti, Quantum channels and their entropic characteristics, Reports on Progress in Physics 75, 046001 (2012).
  24. L. Gyongyosi, S. Imre, and H. V. Nguyen, A survey on quantum channel capacities, IEEE Communications Surveys Tutorials 20, 1149 (2018).
  25. W. Niedenzu, M. Huber, and E. Boukobza, Concepts of work in autonomous quantum heat engines, Quantum 3, 195 (2019).
  26. A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, Europhysics Letters (EPL) 67, 565 (2004).
  27. R. Salvia and V. Giovannetti, Extracting work from correlated many-body quantum systems, Phys. Rev. A 105, 012414 (2022).
  28. R. Salvia, G. De Palma, and V. Giovannetti, Optimal local work extraction from bipartite quantum systems in the presence of hamiltonian couplings, Phys. Rev. A 107, 012405 (2023).
  29. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
  30. C. H. Bennett and P. W. Shor, Quantum information theory, IEEE Transactions on Information Theory 44, 2724 (1998).
  31. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  32. C. King, The capacity of the quantum depolarizing channel, IEEE Transactions on Information Theory 49, 221 (2003).
  33. M. Rosati and V. Giovannetti, Asymmetric information capacities of reciprocal pairs of quantum channels, Phys. Rev. A 97, 052318 (2018).
Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com