Papers
Topics
Authors
Recent
2000 character limit reached

Perfecting one-loop BCJ numerators in SYM and supergravity

Published 1 Nov 2022 in hep-th | (2211.00638v2)

Abstract: We take a major step towards computing $D$-dimensional one-loop amplitudes in general gauge theories, compatible with the principles of unitarity and the color-kinematics duality. For $n$-point amplitudes with either supersymmetry multiplets or generic non-supersymmetric matter in the loop, simple all-multiplicity expressions are obtained for the maximal cuts of kinematic numerators of $n$-gon diagrams. At $n=6,7$ points with maximal supersymmetry, we extend the cubic-diagram numerators to encode all contact terms, and thus solve the long-standing problem of \emph{simultaneously} realizing the following properties: color-kinematics duality, manifest locality, optimal power counting of loop momenta, quadratic rather than linearized Feynman propagators, compatibility with double copy as well as all graph symmetries. Color-kinematics dual representations with similar properties are presented in the half-maximally supersymmetric case at $n=4,5$ points. The resulting gauge-theory integrands and their supergravity counterparts obtained from the double copy are checked to reproduce the expected ultraviolet divergences.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.