Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Imbalanced Learning (2211.00376v1)

Published 1 Nov 2022 in cs.LG and cs.AI

Abstract: Automated Machine Learning has grown very successful in automating the time-consuming, iterative tasks of machine learning model development. However, current methods struggle when the data is imbalanced. Since many real-world datasets are naturally imbalanced, and improper handling of this issue can lead to quite useless models, this issue should be handled carefully. This paper first introduces a new benchmark to study how different AutoML methods are affected by label imbalance. Second, we propose strategies to better deal with imbalance and integrate them into an existing AutoML framework. Finally, we present a systematic study which evaluates the impact of these strategies and find that their inclusion in AutoML systems significantly increases their robustness against label imbalance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.