Papers
Topics
Authors
Recent
Search
2000 character limit reached

Analysis and Detection of Singing Techniques in Repertoires of J-POP Solo Singers

Published 31 Oct 2022 in cs.SD, cs.DL, cs.IR, cs.MM, and eess.AS | (2210.17367v2)

Abstract: In this paper, we focus on singing techniques within the scope of music information retrieval research. We investigate how singers use singing techniques using real-world recordings of famous solo singers in Japanese popular music songs (J-POP). First, we built a new dataset of singing techniques. The dataset consists of 168 commercial J-POP songs, and each song is annotated using various singing techniques with timestamps and vocal pitch contours. We also present descriptive statistics of singing techniques on the dataset to clarify what and how often singing techniques appear. We further explored the difficulty of the automatic detection of singing techniques using previously proposed machine learning techniques. In the detection, we also investigate the effectiveness of auxiliary information (i.e., pitch and distribution of label duration), not only providing the baseline. The best result achieves 40.4% at macro-average F-measure on nine-way multi-class detection. We provide the annotation of the dataset and its detail on the appendix website 0 .

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.