Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion models for missing value imputation in tabular data (2210.17128v2)

Published 31 Oct 2022 in cs.LG and cs.AI

Abstract: Missing value imputation in machine learning is the task of estimating the missing values in the dataset accurately using available information. In this task, several deep generative modeling methods have been proposed and demonstrated their usefulness, e.g., generative adversarial imputation networks. Recently, diffusion models have gained popularity because of their effectiveness in the generative modeling task in images, texts, audio, etc. To our knowledge, less attention has been paid to the investigation of the effectiveness of diffusion models for missing value imputation in tabular data. Based on recent development of diffusion models for time-series data imputation, we propose a diffusion model approach called "Conditional Score-based Diffusion Models for Tabular data" (TabCSDI). To effectively handle categorical variables and numerical variables simultaneously, we investigate three techniques: one-hot encoding, analog bits encoding, and feature tokenization. Experimental results on benchmark datasets demonstrated the effectiveness of TabCSDI compared with well-known existing methods, and also emphasized the importance of the categorical embedding techniques.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Shuhan Zheng (14 papers)
  2. Nontawat Charoenphakdee (21 papers)
Citations (53)

Summary

We haven't generated a summary for this paper yet.