Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hyperspectral images classification and Dimensionality Reduction using Homogeneity feature and mutual information (2210.16239v1)

Published 25 Oct 2022 in cs.CV

Abstract: The Hyperspectral image (HSI) contains several hundred bands of the same region called the Ground Truth (GT). The bands are taken in juxtaposed frequencies, but some of them are noisily measured or contain no information. For the classification, the selection of bands, affects significantly the results of classification, in fact, using a subset of relevant bands, these results can be better than those obtained using all bands, from which the need to reduce the dimensionality of the HSI. In this paper, a categorization of dimensionality reduction methods, according to the generation process, is presented. Furthermore, we reproduce an algorithm based on mutual information (MI) to reduce dimensionality by features selection and we introduce an algorithm using mutual information and homogeneity. The two schemas are a filter strategy. Finally, to validate this, we consider the case study AVIRIS HSI 92AV3C. Keywords: Hyperspectrale images; classification; features selection; mutual information; homogeneity

Citations (5)

Summary

We haven't generated a summary for this paper yet.