Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating the Impact of Loss Function Variation in Deep Learning for Classification (2210.16003v1)

Published 28 Oct 2022 in cs.LG

Abstract: The loss function is arguably among the most important hyperparameters for a neural network. Many loss functions have been designed to date, making a correct choice nontrivial. However, elaborate justifications regarding the choice of the loss function are not made in related work. This is, as we see it, an indication of a dogmatic mindset in the deep learning community which lacks empirical foundation. In this work, we consider deep neural networks in a supervised classification setting and analyze the impact the choice of loss function has onto the training result. While certain loss functions perform suboptimally, our work empirically shows that under-represented losses such as the KL Divergence can outperform the State-of-the-Art choices significantly, highlighting the need to include the loss function as a tuned hyperparameter rather than a fixed choice.

Citations (2)

Summary

We haven't generated a summary for this paper yet.