Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completely Heterogeneous Federated Learning (2210.15865v1)

Published 28 Oct 2022 in cs.LG, cs.CR, and cs.DC

Abstract: Federated learning (FL) faces three major difficulties: cross-domain, heterogeneous models, and non-i.i.d. labels scenarios. Existing FL methods fail to handle the above three constraints at the same time, and the level of privacy protection needs to be lowered (e.g., the model architecture and data category distribution can be shared). In this work, we propose the challenging "completely heterogeneous" scenario in FL, which refers to that each client will not expose any private information including feature space, model architecture, and label distribution. We then devise an FL framework based on parameter decoupling and data-free knowledge distillation to solve the problem. Experiments show that our proposed method achieves high performance in completely heterogeneous scenarios where other approaches fail.

Citations (8)

Summary

We haven't generated a summary for this paper yet.