Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning Based Audio-Visual Multi-Speaker DOA Estimation Using Permutation-Free Loss Function (2210.14581v1)

Published 26 Oct 2022 in eess.AS, cs.SD, and eess.IV

Abstract: In this paper, we propose a deep learning based multi-speaker direction of arrival (DOA) estimation with audio and visual signals by using permutation-free loss function. We first collect a data set for multi-modal sound source localization (SSL) where both audio and visual signals are recorded in real-life home TV scenarios. Then we propose a novel spatial annotation method to produce the ground truth of DOA for each speaker with the video data by transformation between camera coordinate and pixel coordinate according to the pin-hole camera model. With spatial location information served as another input along with acoustic feature, multi-speaker DOA estimation could be solved as a classification task of active speaker detection. Label permutation problem in multi-speaker related tasks will be addressed since the locations of each speaker are used as input. Experiments conducted on both simulated data and real data show that the proposed audio-visual DOA estimation model outperforms audio-only DOA estimation model by a large margin.

Citations (4)

Summary

We haven't generated a summary for this paper yet.