Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Existence of ground state solutions for a Choquard double phase problem (2210.14282v1)

Published 25 Oct 2022 in math.AP

Abstract: In this paper we study quasilinear elliptic equations driven by the double phase operator involving a Choquard term of the form \begin{align*} -\mathcal{L}{p,q}{a}(u) + |u|{p-2}u+ a(x) |u|{q-2}u = \left( \int{\mathbb{R}N} \frac{F(y, u)}{|x-y|\mu}\,\mathrm{d} y\right)f(x,u) \quad\text{in } \mathbb{R}N, \end{align*} where $\mathcal{L}{p,q}{a}$ is the double phase operator given by \begin{align*} \mathcal{L}{p,q}{a}(u):= \operatorname{div}\big(|\nabla u|{p-2}\nabla u + a(x) |\nabla u|{q-2}\nabla u \big), \quad u\in W{1,\mathcal{H}}(\mathbb{R}N), \end{align*} $0<\mu<N$, $1<p<N$, $p<q<p+ \frac{\alpha p}{N}$, $0 \leq a(\cdot)\in C{0,\alpha}(\mathbb{R}N)$ with $\alpha \in (0,1]$ and $f\colon\mathbb{R}N\times\mathbb{R}\to\mathbb{R}$ is a continuous function that satisfies a subcritical growth. Based on the Hardy-Littlewood-Sobolev inequality, the Nehari manifold and variational tools, we prove the existence of ground state solutions of such problems under different assumptions on the data.

Summary

We haven't generated a summary for this paper yet.