Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 402 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

LAB: Learnable Activation Binarizer for Binary Neural Networks (2210.13858v1)

Published 25 Oct 2022 in cs.LG, cs.AI, and cs.CV

Abstract: Binary Neural Networks (BNNs) are receiving an upsurge of attention for bringing power-hungry deep learning towards edge devices. The traditional wisdom in this space is to employ sign() for binarizing featuremaps. We argue and illustrate that sign() is a uniqueness bottleneck, limiting information propagation throughout the network. To alleviate this, we propose to dispense sign(), replacing it with a learnable activation binarizer (LAB), allowing the network to learn a fine-grained binarization kernel per layer - as opposed to global thresholding. LAB is a novel universal module that can seamlessly be integrated into existing architectures. To confirm this, we plug it into four seminal BNNs and show a considerable performance boost at the cost of tolerable increase in delay and complexity. Finally, we build an end-to-end BNN (coined as LAB-BNN) around LAB, and demonstrate that it achieves competitive performance on par with the state-of-the-art on ImageNet.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.