Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A comparative study to alternatives to the log-rank test (2210.13258v1)

Published 24 Oct 2022 in stat.ME and stat.AP

Abstract: Studies to compare the survival of two or more groups using time-to-event data are of high importance in medical research. The gold standard is the log-rank test, which is optimal under proportional hazards. As the latter is no simple regularity assumption, we are interested in evaluating the power of various statistical tests under different settings including proportional and non-proportional hazards with a special emphasize on crossing hazards. This challenge has been going on for many years now and multiple methods have already been investigated in extensive simulation studies. However, in recent years new omnibus tests and methods based on the restricted mean survival time appeared that have been strongly recommended in biometric literature. Thus, to give updated recommendations, we perform a vast simulation study to compare tests that showed high power in previous studies with these more recent approaches. We thereby analyze various simulation settings with varying survival and censoring distributions, unequal censoring between groups, small sample sizes and unbalanced group sizes. Overall, omnibus tests are more robust in terms of power against deviations from the proportional hazards assumption.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube