Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Self-Supervised Learning with Masked Image Modeling for Teeth Numbering, Detection of Dental Restorations, and Instance Segmentation in Dental Panoramic Radiographs (2210.11404v1)

Published 20 Oct 2022 in cs.CV

Abstract: The computer-assisted radiologic informative report is currently emerging in dental practice to facilitate dental care and reduce time consumption in manual panoramic radiographic interpretation. However, the amount of dental radiographs for training is very limited, particularly from the point of view of deep learning. This study aims to utilize recent self-supervised learning methods like SimMIM and UM-MAE to increase the model efficiency and understanding of the limited number of dental radiographs. We use the Swin Transformer for teeth numbering, detection of dental restorations, and instance segmentation tasks. To the best of our knowledge, this is the first study that applied self-supervised learning methods to Swin Transformer on dental panoramic radiographs. Our results show that the SimMIM method obtained the highest performance of 90.4% and 88.9% on detecting teeth and dental restorations and instance segmentation, respectively, increasing the average precision by 13.4 and 12.8 over the random initialization baseline. Moreover, we augment and correct the existing dataset of panoramic radiographs. The code and the dataset are available at https://github.com/AmaniHAlmalki/DentalMIM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Amani Almalki (3 papers)
  2. Longin Jan Latecki (25 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.