Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TTTFlow: Unsupervised Test-Time Training with Normalizing Flow (2210.11389v1)

Published 20 Oct 2022 in cs.CV, cs.AI, and cs.LG

Abstract: A major problem of deep neural networks for image classification is their vulnerability to domain changes at test-time. Recent methods have proposed to address this problem with test-time training (TTT), where a two-branch model is trained to learn a main classification task and also a self-supervised task used to perform test-time adaptation. However, these techniques require defining a proxy task specific to the target application. To tackle this limitation, we propose TTTFlow: a Y-shaped architecture using an unsupervised head based on Normalizing Flows to learn the normal distribution of latent features and detect domain shifts in test examples. At inference, keeping the unsupervised head fixed, we adapt the model to domain-shifted examples by maximizing the log likelihood of the Normalizing Flow. Our results show that our method can significantly improve the accuracy with respect to previous works.

Citations (15)

Summary

We haven't generated a summary for this paper yet.