Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A note on diffusion limits for stochastic gradient descent (2210.11257v1)

Published 20 Oct 2022 in cs.LG, math.OC, and math.PR

Abstract: In the machine learning literature stochastic gradient descent has recently been widely discussed for its purported implicit regularization properties. Much of the theory, that attempts to clarify the role of noise in stochastic gradient algorithms, has widely approximated stochastic gradient descent by a stochastic differential equation with Gaussian noise. We provide a novel rigorous theoretical justification for this practice that showcases how the Gaussianity of the noise arises naturally.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.