Classical Lie Bialgebras for AdS/CFT Integrability by Contraction and Reduction (2210.11150v2)
Abstract: Integrability of the one-dimensional Hubbard model and of the factorised scattering problem encountered on the worldsheet of AdS strings can be expressed in terms of a peculiar quantum algebra. In this article, we derive the classical limit of these algebraic integrable structures based on established results for the exceptional simple Lie superalgebra d(2,1;epsilon) along with standard sl(2) which form supersymmetric isometries on 3D AdS space. The two major steps in this construction consist in the contraction to a 3D Poincar\'e superalgebra and a certain reduction to a deformation of the u(2|2) superalgebra. We apply these steps to the integrable structure and obtain the desired Lie bialgebras with suitable classical r-matrices of rational and trigonometric kind. We illustrate our findings in terms of representations for on-shell fields on AdS and flat space.
- V. G. Drinfel’d, “Hopf algebras and the quantum Yang–Baxter equation”, Sov. Math. Dokl. 32, 254 (1985).
- V. G. Drinfel’d, “Quantum groups”, J. Sov. Math. 41, 898 (1988).
- J. Hubbard, “Electron Correlations in Narrow Energy Bands”, Proc. R. Soc. London A 276, 238 (1963), http://www.jstor.org/stable/2414761.
- F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper and V. E. Korepin, “The one-dimensional Hubbard model”, Cambridge University Press (2005), Cambridge, UK.
- B. S. Shastry, “Exact Integrability of the One-Dimensional Hubbard Model”, Phys. Rev. Lett. 56, 2453 (1986).
- N. Beisert, “The Analytic Bethe Ansatz for a Chain with Centrally Extended su(2///2) Symmetry”, J. Stat. Mech. 0701, P01017 (2007), nlin/0610017.
- N. Beisert, “The SU(2///2) dynamic S-matrix”, Adv. Theor. Math. Phys. 12, 945 (2008), hep-th/0511082.
- N. Beisert et al., “Review of AdS/CFT Integrability: An Overview”, Lett. Math. Phys. 99, 3 (2012), arxiv:1012.3982.
- C. Gómez and R. Hernández, “The Magnon kinematics of the AdS/CFT correspondence”, JHEP 0611, 021 (2006), hep-th/0608029.
- J. Plefka, F. Spill and A. Torrielli, “On the Hopf algebra structure of the AdS/CFT S-matrix”, Phys. Rev. D 74, 066008 (2006), hep-th/0608038.
- N. Beisert, “The S-matrix of AdS/CFT and Yangian symmetry”, PoS SOLVAY, 002 (2006), arxiv:0704.0400.
- N. Dorey, “Magnon Bound States and the AdS/CFT Correspondence”, J. Phys. A 39, 13119 (2006), hep-th/0604175.
- H.-Y. Chen, N. Dorey and K. Okamura, “The Asymptotic spectrum of the N = 4 super Yang-Mills spin chain”, JHEP 0703, 005 (2007), hep-th/0610295.
- T. Matsumoto and A. Molev, “Representations of centrally extended Lie superalgebra psl(2///2)”, J. Math. Phys. 55, 091704 (2014), arxiv:1405.3420.
- G. Arutyunov and S. Frolov, “The S-matrix of String Bound States”, Nucl. Phys. B 804, 90 (2008), arxiv:0803.4323.
- M. de Leeuw, “Bound States, Yangian Symmetry and Classical r-matrix for the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, JHEP 0806, 085 (2008), arxiv:0804.1047.
- G. Arutyunov, M. de Leeuw and A. Torrielli, “The Bound State S-Matrix for AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, Nucl. Phys. B 819, 319 (2009), arxiv:0902.0183.
- R. A. Janik, “The AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring worldsheet S-matrix and crossing symmetry”, Phys. Rev. D 73, 086006 (2006), hep-th/0603038.
- R. Hernández and E. López, “Quantum corrections to the string Bethe ansatz”, JHEP 0607, 004 (2006), hep-th/0603204.
- G. Arutyunov and S. Frolov, “On AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT String S-matrix”, Phys. Lett. B 639, 378 (2006), hep-th/0604043.
- N. Beisert, R. Hernández and E. López, “A Crossing-symmetric phase for AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT strings”, JHEP 0611, 070 (2006), hep-th/0609044.
- N. Beisert, B. Eden and M. Staudacher, “Transcendentality and Crossing”, J. Stat. Mech. 0701, P01021 (2007), hep-th/0610251.
- N. Dorey, D. M. Hofman and J. M. Maldacena, “On the Singularities of the Magnon S-matrix”, Phys. Rev. D 76, 025011 (2007), hep-th/0703104.
- F. Spill and A. Torrielli, “On Drinfeld’s second realization of the AdS/CFT su(2///2) Yangian”, J. Geom. Phys. 59, 489 (2009), arxiv:0803.3194.
- N. Beisert and M. de Leeuw, “The RTT realization for the deformed gl(2///2) Yangian”, J. Phys. A 47, 305201 (2014), arxiv:1401.7691.
- N. Beisert, M. de Leeuw and R. Hecht, “Maximally extended sl(2///2) as a quantum double”, J. Phys. A 49, 434005 (2016), arxiv:1602.04988.
- T. Matsumoto, “Drinfeld realization of the centrally extended psl(2///2) Yangian algebra with the manifest coproducts”, arxiv:2208.11889.
- T. Klose, T. McLoughlin, R. Roiban and K. Zarembo, “Worldsheet scattering in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 0703, 094 (2007), hep-th/0611169.
- A. Torrielli, “Classical r-matrix of the su(2///2) SYM spin-chain”, Phys. Rev. D 75, 105020 (2007), hep-th/0701281.
- S. Moriyama and A. Torrielli, “A Yangian double for the AdS/CFT classical r-matrix”, JHEP 0706, 083 (2007), arxiv:0706.0884.
- N. Beisert and F. Spill, “The Classical r-matrix of AdS/CFT and its Lie Bialgebra Structure”, Commun. Math. Phys. 285, 537 (2009), arxiv:0708.1762.
- T. Matsumoto, S. Moriyama and A. Torrielli, “A Secret Symmetry of the AdS/CFT S-matrix”, JHEP 0709, 099 (2007), arxiv:0708.1285.
- N. Beisert, R. Hecht and B. Hoare, “Maximally extended sl(2///2), q-deformed d(2,1;ϵitalic-ϵ\epsilonitalic_ϵ) and 3D kappa-Poincaré”, J. Phys. A 50, 314003 (2017), arxiv:1704.05093.
- T. Matsumoto and S. Moriyama, “An Exceptional Algebraic Origin of the AdS/CFT Yangian Symmetry”, JHEP 0804, 022 (2008), arxiv:0803.1212.
- V. Chari and A. Pressley, “A guide to quantum groups”, Cambridge University Press (1994), Cambridge, UK.
- V. G. Drinfel’d and A. A. Belavin, “Solutions of the classical Yang-Baxter equation for simple Lie algebras”, Func. Anal. Appl. 16, 159 (1982).
- N. Reshetikhin, “Multiparameter quantum groups and twisted quasitriangular Hopf algebras”, Lett. Math. Phys. 20, 331 (1990).
- G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, “The Off-shell Symmetry Algebra of the Light-cone AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT Superstring”, J. Phys. A 40, 3583 (2007), hep-th/0609157.
- D. M. Hofman and J. M. Maldacena, “Giant Magnons”, J. Phys. A 39, 13095 (2006), hep-th/0604135.
- N. Beisert, “The Classical Trigonometric r-Matrix for the Quantum-Deformed Hubbard Chain”, J. Phys. A 44, 265202 (2011), arxiv:1002.1097.
- N. Beisert and P. Koroteev, “Quantum Deformations of the One-Dimensional Hubbard Model”, J. Phys. A 41, 255204 (2008), arxiv:0802.0777.
- N. Beisert, W. Galleas and T. Matsumoto, “A Quantum Affine Algebra for the Deformed Hubbard Chain”, J. Phys. A 45, 365206 (2012), arxiv:1102.5700.
- F. Delduc, M. Magro and B. Vicedo, “An integrable deformation of the AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring action”, Phys. Rev. Lett. 112, 051601 (2014), arxiv:1309.5850.
- G. Arutyunov, R. Borsato and S. Frolov, “S-matrix for strings on η𝜂\etaitalic_η-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT”, JHEP 1404, 002 (2014), arxiv:1312.3542.
- F. Delduc, M. Magro and B. Vicedo, “Derivation of the action and symmetries of the q-deformed AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT ×\times× S55{}^{5}start_FLOATSUPERSCRIPT 5 end_FLOATSUPERSCRIPT superstring”, JHEP 1410, 132 (2014), arxiv:1406.6286.
- W. Nahm, “Supersymmetries and their Representations”, Nucl. Phys. B 135, 149 (1978).
- J. Van der Jeugt, “Irreducible representations of the exceptional Lie superalgebras D(2,1;α𝛼\alphaitalic_α)”, J. Math. Phys. 26, 913 (1985).
- O. Ohlsson Sax and B. Stefanski, Jr., “Integrability, spin-chains and the AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT/CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPT correspondence”, JHEP 1108, 029 (2011), arxiv:1106.2558.
- L. Eberhardt and M. R. Gaberdiel, “Strings on AdS33{}_{3}start_FLOATSUBSCRIPT 3 end_FLOATSUBSCRIPT ×\times× S33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT ×\times× S33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPT ×\times× S11{}^{1}start_FLOATSUPERSCRIPT 1 end_FLOATSUPERSCRIPT”, JHEP 1906, 035 (2019), arxiv:1904.01585.
- G. Arutyunov, S. Frolov and M. Staudacher, “Bethe ansatz for quantum strings”, JHEP 0410, 016 (2004), hep-th/0406256.
- N. Beisert and E. Im, “Affine Classical Lie Bialgebras for AdS/CFT Integrability”, in preparation.
- N. Beisert, “The Dilatation operator of N = 4 super Yang-Mills theory and integrability”, Phys. Rept. 405, 1 (2004), hep-th/0407277.
- N. Beisert and E. Im, work in progress.
- C. Gómez and R. Hernández, “Quantum deformed magnon kinematics”, JHEP 0703, 108 (2007), hep-th/0701200.
- R. Borsato and A. Torrielli, “q𝑞qitalic_q-Poincaré supersymmetry in AdS55{}_{5}start_FLOATSUBSCRIPT 5 end_FLOATSUBSCRIPT/CFT44{}_{4}start_FLOATSUBSCRIPT 4 end_FLOATSUBSCRIPT”, Nucl. Phys. B 928, 321 (2018), arxiv:1706.10265.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.