Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 235 tok/s Pro
2000 character limit reached

A Robust Pedestrian Detection Approach for Autonomous Vehicles (2210.10489v1)

Published 19 Oct 2022 in cs.CV and cs.AI

Abstract: Nowadays, utilizing Advanced Driver-Assistance Systems (ADAS) has absorbed a huge interest as a potential solution for reducing road traffic issues. Despite recent technological advances in such systems, there are still many inquiries that need to be overcome. For instance, ADAS requires accurate and real-time detection of pedestrians in various driving scenarios. To solve the mentioned problem, this paper aims to fine-tune the YOLOv5s framework for handling pedestrian detection challenges on the real-world instances of Caltech pedestrian dataset. We also introduce a developed toolbox for preparing training and test data and annotations of Caltech pedestrian dataset into the format recognizable by YOLOv5. Experimental results of utilizing our approach show that the mean Average Precision (mAP) of our fine-tuned model for pedestrian detection task is more than 91 percent when performing at the highest rate of 70 FPS. Moreover, the experiments on the Caltech pedestrian dataset samples have verified that our proposed approach is an effective and accurate method for pedestrian detection and can outperform other existing methodologies.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.