Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Interactive Interpretability System for Breast Cancer Screening with Deep Learning (2210.08979v1)

Published 30 Sep 2022 in eess.IV, cs.AI, cs.CV, cs.HC, and cs.LG

Abstract: Deep learning methods, in particular convolutional neural networks, have emerged as a powerful tool in medical image computing tasks. While these complex models provide excellent performance, their black-box nature may hinder real-world adoption in high-stakes decision-making. In this paper, we propose an interactive system to take advantage of state-of-the-art interpretability techniques to assist radiologists with breast cancer screening. Our system integrates a deep learning model into the radiologists' workflow and provides novel interactions to promote understanding of the model's decision-making process. Moreover, we demonstrate that our system can take advantage of user interactions progressively to provide finer-grained explainability reports with little labeling overhead. Due to the generic nature of the adopted interpretability technique, our system is domain-agnostic and can be used for many different medical image computing tasks, presenting a novel perspective on how we can leverage visual analytics to transform originally static interpretability techniques to augment human decision making and promote the adoption of medical AI.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yuzhe Lu (22 papers)
  2. Adam Perer (29 papers)
Citations (3)