Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ODG-Q: Robust Quantization via Online Domain Generalization (2210.08701v1)

Published 17 Oct 2022 in cs.LG and cs.CV

Abstract: Quantizing neural networks to low-bitwidth is important for model deployment on resource-limited edge hardware. Although a quantized network has a smaller model size and memory footprint, it is fragile to adversarial attacks. However, few methods study the robustness and training efficiency of quantized networks. To this end, we propose a new method by recasting robust quantization as an online domain generalization problem, termed ODG-Q, which generates diverse adversarial data at a low cost during training. ODG-Q consistently outperforms existing works against various adversarial attacks. For example, on CIFAR-10 dataset, ODG-Q achieves 49.2% average improvements under five common white-box attacks and 21.7% average improvements under five common black-box attacks, with a training cost similar to that of natural training (viz. without adversaries). To our best knowledge, this work is the first work that trains both quantized and binary neural networks on ImageNet that consistently improve robustness under different attacks. We also provide a theoretical insight of ODG-Q that accounts for the bound of model risk on attacked data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chaofan Tao (27 papers)
  2. Ngai Wong (82 papers)
Citations (1)