Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scaling up Trustless DNN Inference with Zero-Knowledge Proofs (2210.08674v1)

Published 17 Oct 2022 in cs.CR and cs.LG

Abstract: As ML models have increased in capabilities and accuracy, so has the complexity of their deployments. Increasingly, ML model consumers are turning to service providers to serve the ML models in the ML-as-a-service (MLaaS) paradigm. As MLaaS proliferates, a critical requirement emerges: how can model consumers verify that the correct predictions were served, in the face of malicious, lazy, or buggy service providers? In this work, we present the first practical ImageNet-scale method to verify ML model inference non-interactively, i.e., after the inference has been done. To do so, we leverage recent developments in ZK-SNARKs (zero-knowledge succinct non-interactive argument of knowledge), a form of zero-knowledge proofs. ZK-SNARKs allows us to verify ML model execution non-interactively and with only standard cryptographic hardness assumptions. In particular, we provide the first ZK-SNARK proof of valid inference for a full resolution ImageNet model, achieving 79\% top-5 accuracy. We further use these ZK-SNARKs to design protocols to verify ML model execution in a variety of scenarios, including for verifying MLaaS predictions, verifying MLaaS model accuracy, and using ML models for trustless retrieval. Together, our results show that ZK-SNARKs have the promise to make verified ML model inference practical.

Citations (29)

Summary

We haven't generated a summary for this paper yet.