Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class Distribution Monitoring for Concept Drift Detection (2210.08470v1)

Published 16 Oct 2022 in cs.LG

Abstract: We introduce Class Distribution Monitoring (CDM), an effective concept-drift detection scheme that monitors the class-conditional distributions of a datastream. In particular, our solution leverages multiple instances of an online and nonparametric change-detection algorithm based on QuantTree. CDM reports a concept drift after detecting a distribution change in any class, thus identifying which classes are affected by the concept drift. This can be precious information for diagnostics and adaptation. Our experiments on synthetic and real-world datastreams show that when the concept drift affects a few classes, CDM outperforms algorithms monitoring the overall data distribution, while achieving similar detection delays when the drift affects all the classes. Moreover, CDM outperforms comparable approaches that monitor the classification error, particularly when the change is not very apparent. Finally, we demonstrate that CDM inherits the properties of the underlying change detector, yielding an effective control over the expected time before a false alarm, or Average Run Length (ARL$_0$).

Citations (4)

Summary

We haven't generated a summary for this paper yet.