Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decoupling Deep Learning for Interpretable Image Recognition (2210.08336v3)

Published 15 Oct 2022 in cs.CV

Abstract: The interpretability of neural networks has recently received extensive attention. Previous prototype-based explainable networks involved prototype activation in both reasoning and interpretation processes, requiring specific explainable structures for the prototype, thus making the network less accurate as it gains interpretability. Therefore, the decoupling prototypical network (DProtoNet) was proposed to avoid this problem. This new model contains encoder, inference, and interpretation modules. As regards the encoder module, unrestricted feature masks were presented to generate expressive features and prototypes. Regarding the inference module, a multi-image prototype learning method was introduced to update prototypes so that the network can learn generalized prototypes. Finally, concerning the interpretation module, a multiple dynamic masks (MDM) decoder was suggested to explain the neural network, which generates heatmaps using the consistent activation of the original image and mask image at the detection nodes of the network. It decouples the inference and interpretation modules of a prototype-based network by avoiding the use of prototype activation to explain the network's decisions in order to simultaneously improve the accuracy and interpretability of the neural network. The multiple public general and medical datasets were tested, and the results confirmed that our method could achieve a 5% improvement in accuracy and state-of-the-art interpretability compared with previous methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.