Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Multistep Frank-Wolfe Method (2210.08110v1)

Published 14 Oct 2022 in math.OC and cs.LG

Abstract: The Frank-Wolfe algorithm has regained much interest in its use in structurally constrained machine learning applications. However, one major limitation of the Frank-Wolfe algorithm is the slow local convergence property due to the zig-zagging behavior. We observe the zig-zagging phenomenon in the Frank-Wolfe method as an artifact of discretization, and propose multistep Frank-Wolfe variants where the truncation errors decay as $O(\Deltap)$, where $p$ is the method's order. This strategy "stabilizes" the method, and allows tools like line search and momentum to have more benefits. However, our results suggest that the worst case convergence rate of Runge-Kutta-type discretization schemes cannot improve upon that of the vanilla Frank-Wolfe method for a rate depending on $k$. Still, we believe that this analysis adds to the growing knowledge of flow analysis for optimization methods, and is a cautionary tale on the ultimate usefulness of multistep methods.

Summary

We haven't generated a summary for this paper yet.