Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Multiple Choice Hard Thresholding Pursuit (MCHTP) for Simultaneous Sparse Recovery and Sparsity Order Estimation (2210.07800v2)

Published 14 Oct 2022 in cs.IT and math.IT

Abstract: We address the problem of sparse recovery using greedy compressed sensing recovery algorithms, without explicit knowledge of the sparsity. Estimating the sparsity order is a crucial problem in many practical scenarios, e.g., wireless communications, where exact value of the sparsity order of the unknown channel may be unavailable a priori. In this paper we have proposed a new greedy algorithm, referred to as the Multiple Choice Hard Thresholding Pursuit (MCHTP), which modifies the popular hard thresholding pursuit (HTP) suitably to iteratively recover the unknown sparse vector along with the sparsity order of the unknown vector. We provide provable performance guarantees which ensures that MCHTP can estimate the sparsity order exactly, along with recovering the unknown sparse vector exactly with noiseless measurements. The simulation results corroborate the theoretical findings, demonstrating that even without exact sparsity knowledge, with only the knowledge of a loose upper bound of the sparsity, MCHTP exhibits outstanding recovery performance, which is almost identical to that of the conventional HTP with exact sparsity knowledge. Furthermore, simulation results demonstrate much lower computational complexity of MCHTP compared to other state-of-the-art techniques like MSP.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.