Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Getting higher on rugged landscapes: Inversion mutations open access to fitter adaptive peaks in NK fitness landscapes (2210.06804v1)

Published 13 Oct 2022 in q-bio.PE, nlin.AO, and physics.bio-ph

Abstract: Molecular evolution is often conceptualised as adaptive walks on rugged fitness landscapes, driven by mutations and constrained by incremental fitness selection. It is well known that epistasis shapes the ruggedness of the landscape's surface, outlining their topography (with high-fitness peaks separated by valleys of lower fitness genotypes). However, within the strong selection weak mutation (SSWM) limit, once an adaptive walk reaches a local peak, natural selection restricts passage through downstream paths and hampers any possibility of reaching higher fitness values. Here, in addition to the widely used point mutations, we introduce a minimal model of sequence inversions to simulate adaptive walks. We use the well known NK model to instantiate rugged landscapes. We show that adaptive walks can reach higher fitness values through inversion mutations, which, compared to point mutations, allows the evolutionary process to escape local fitness peaks. To elucidate the effects of this chromosomal rearrangement, we use a graph-theoretical representation of accessible mutants and show how new evolutionary paths are uncovered. The present model suggests a simple mechanistic rationale to analyse escapes from local fitness peaks in molecular evolution driven by (intragenic) structural inversions and reveals some consequences of the limits of point mutations for simulations of molecular evolution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.