2000 character limit reached
Deep Koopman Learning of Nonlinear Time-Varying Systems (2210.06272v3)
Published 12 Oct 2022 in eess.SY and cs.SY
Abstract: This paper presents a data-driven approach to approximate the dynamics of a nonlinear time-varying system (NTVS) by a linear time-varying system (LTVS), which is resulted from the Koopman operator and deep neural networks. Analysis of the approximation error between states of the NTVS and the resulting LTVS is presented. Simulations on a representative NTVS show that the proposed method achieves small approximation errors, even when the system changes rapidly. Furthermore, simulations in an example of quadcopters demonstrate the computational efficiency of the proposed approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.