Papers
Topics
Authors
Recent
Search
2000 character limit reached

Real-Time Dynamic Map with Crowdsourcing Vehicles in Edge Computing

Published 10 Oct 2022 in cs.DC | (2210.05034v1)

Abstract: Autonomous driving perceives surroundings with line-of-sight sensors that are compromised under environmental uncertainties. To achieve real time global information in high definition map, we investigate to share perception information among connected and automated vehicles. However, it is challenging to achieve real time perception sharing under varying network dynamics in automotive edge computing. In this paper, we propose a novel real time dynamic map, named LiveMap to detect, match, and track objects on the road. We design the data plane of LiveMap to efficiently process individual vehicle data with multiple sequential computation components, including detection, projection, extraction, matching and combination. We design the control plane of LiveMap to achieve adaptive vehicular offloading with two new algorithms (central and distributed) to balance the latency and coverage performance based on deep reinforcement learning techniques. We conduct extensive evaluation through both realistic experiments on a small-scale physical testbed and network simulations on an edge network simulator. The results suggest that LiveMap significantly outperforms existing solutions in terms of latency, coverage, and accuracy.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (5)

Collections

Sign up for free to add this paper to one or more collections.