Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do Children Texts Hold The Key To Commonsense Knowledge? (2210.04530v1)

Published 10 Oct 2022 in cs.CL and cs.AI

Abstract: Compiling comprehensive repositories of commonsense knowledge is a long-standing problem in AI. Many concerns revolve around the issue of reporting bias, i.e., that frequency in text sources is not a good proxy for relevance or truth. This paper explores whether children's texts hold the key to commonsense knowledge compilation, based on the hypothesis that such content makes fewer assumptions on the reader's knowledge, and therefore spells out commonsense more explicitly. An analysis with several corpora shows that children's texts indeed contain much more, and more typical commonsense assertions. Moreover, experiments show that this advantage can be leveraged in popular language-model-based commonsense knowledge extraction settings, where task-unspecific fine-tuning on small amounts of children texts (childBERT) already yields significant improvements. This provides a refreshing perspective different from the common trend of deriving progress from ever larger models and corpora.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Julien Romero (7 papers)
  2. Simon Razniewski (49 papers)
Citations (1)