Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visually Grounded Commonsense Knowledge Acquisition (2211.12054v2)

Published 22 Nov 2022 in cs.CV, cs.AI, and cs.CL

Abstract: Large-scale commonsense knowledge bases empower a broad range of AI applications, where the automatic extraction of commonsense knowledge (CKE) is a fundamental and challenging problem. CKE from text is known for suffering from the inherent sparsity and reporting bias of commonsense in text. Visual perception, on the other hand, contains rich commonsense knowledge about real-world entities, e.g., (person, can_hold, bottle), which can serve as promising sources for acquiring grounded commonsense knowledge. In this work, we present CLEVER, which formulates CKE as a distantly supervised multi-instance learning problem, where models learn to summarize commonsense relations from a bag of images about an entity pair without any human annotation on image instances. To address the problem, CLEVER leverages vision-language pre-training models for deep understanding of each image in the bag, and selects informative instances from the bag to summarize commonsense entity relations via a novel contrastive attention mechanism. Comprehensive experimental results in held-out and human evaluation show that CLEVER can extract commonsense knowledge in promising quality, outperforming pre-trained LLM-based methods by 3.9 AUC and 6.4 mAUC points. The predicted commonsense scores show strong correlation with human judgment with a 0.78 Spearman coefficient. Moreover, the extracted commonsense can also be grounded into images with reasonable interpretability. The data and codes can be obtained at https://github.com/thunlp/CLEVER.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (11)
  1. Yuan Yao (292 papers)
  2. Tianyu Yu (20 papers)
  3. Ao Zhang (45 papers)
  4. Mengdi Li (19 papers)
  5. Ruobing Xie (97 papers)
  6. Cornelius Weber (51 papers)
  7. Zhiyuan Liu (433 papers)
  8. Hai-Tao Zheng (94 papers)
  9. Stefan Wermter (157 papers)
  10. Tat-Seng Chua (359 papers)
  11. Maosong Sun (337 papers)
Citations (4)
Github Logo Streamline Icon: https://streamlinehq.com

GitHub