Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HealthE: Classifying Entities in Online Textual Health Advice (2210.03246v1)

Published 6 Oct 2022 in cs.CL

Abstract: The processing of entities in natural language is essential to many medical NLP systems. Unfortunately, existing datasets vastly under-represent the entities required to model public health relevant texts such as health advice often found on sites like WebMD. People rely on such information for personal health management and clinically relevant decision making. In this work, we release a new annotated dataset, HealthE, consisting of 6,756 health advice. HealthE has a more granular label space compared to existing medical NER corpora and contains annotation for diverse health phrases. Additionally, we introduce a new health entity classification model, EP S-BERT, which leverages textual context patterns in the classification of entity classes. EP S-BERT provides a 4-point increase in F1 score over the nearest baseline and a 34-point increase in F1 when compared to off-the-shelf medical NER tools trained to extract disease and medication mentions from clinical texts. All code and data are publicly available on Github.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Joseph Gatto (17 papers)
  2. Parker Seegmiller (11 papers)
  3. Garrett Johnston (1 paper)
  4. Sarah M. Preum (15 papers)
Citations (1)