Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Domain Discrepancy Aware Distillation for Model Aggregation in Federated Learning (2210.02190v1)

Published 4 Oct 2022 in cs.LG and cs.AI

Abstract: Knowledge distillation has recently become popular as a method of model aggregation on the server for federated learning. It is generally assumed that there are abundant public unlabeled data on the server. However, in reality, there exists a domain discrepancy between the datasets of the server domain and a client domain, which limits the performance of knowledge distillation. How to improve the aggregation under such a domain discrepancy setting is still an open problem. In this paper, we first analyze the generalization bound of the aggregation model produced from knowledge distillation for the client domains, and then describe two challenges, server-to-client discrepancy and client-to-client discrepancy, brought to the aggregation model by the domain discrepancies. Following our analysis, we propose an adaptive knowledge aggregation algorithm FedD3A based on domain discrepancy aware distillation to lower the bound. FedD3A performs adaptive weighting at the sample level in each round of FL. For each sample in the server domain, only the client models of its similar domains will be selected for playing the teacher role. To achieve this, we show that the discrepancy between the server-side sample and the client domain can be approximately measured using a subspace projection matrix calculated on each client without accessing its raw data. The server can thus leverage the projection matrices from multiple clients to assign weights to the corresponding teacher models for each server-side sample. We validate FedD3A on two popular cross-domain datasets and show that it outperforms the compared competitors in both cross-silo and cross-device FL settings.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.