Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT Systems (2210.02144v2)

Published 5 Oct 2022 in cs.LG and cs.NI

Abstract: Machine learning (ML) applications continue to revolutionize many domains. In recent years, there has been considerable research interest in building novel ML applications for a variety of Internet of Things (IoT) domains, such as precision agriculture, smart cities, and smart manufacturing. IoT domains are characterized by continuous streams of data originating from diverse, geographically distributed sensors, and they often require a real-time or semi-real-time response. IoT characteristics pose several fundamental challenges to designing and implementing effective ML applications. Sensor/network failures that result in data stream interruptions is one such challenge. Unfortunately, the performance of many ML applications quickly degrades when faced with data incompleteness. Current techniques to handle data incompleteness are based upon data imputation ( i.e., they try to fill-in missing data). Unfortunately, these techniques may fail, especially when multiple sensors' data streams become concurrently unavailable (due to simultaneous sensor failures). With the aim of building robust IoT-coupled ML applications, this paper proposes SECOE, a unique, proactive approach for alleviating potentially simultaneous sensor failures. The fundamental idea behind SECOE is to create a carefully chosen ensemble of ML models in which each model is trained assuming a set of failed sensors (i.e., the training set omits corresponding values). SECOE includes a novel technique to minimize the number of models in the ensemble by harnessing the correlations among sensors. We demonstrate the efficacy of the SECOE approach through a series of experiments involving three distinct datasets. The experimental findings reveal that SECOE effectively preserves prediction accuracy in the presence of sensor failures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yousef AlShehri (2 papers)
  2. Lakshmish Ramaswamy (7 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.