Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering Semantic Predicates in the Open Research Knowledge Graph (2210.02034v1)

Published 5 Oct 2022 in cs.DL and cs.AI

Abstract: When semantically describing knowledge graphs (KGs), users have to make a critical choice of a vocabulary (i.e. predicates and resources). The success of KG building is determined by the convergence of shared vocabularies so that meaning can be established. The typical lifecycle for a new KG construction can be defined as follows: nascent phases of graph construction experience terminology divergence, while later phases of graph construction experience terminology convergence and reuse. In this paper, we describe our approach tailoring two AI-based clustering algorithms for recommending predicates (in RDF statements) about resources in the Open Research Knowledge Graph (ORKG) https://orkg.org/. Such a service to recommend existing predicates to semantify new incoming data of scholarly publications is of paramount importance for fostering terminology convergence in the ORKG. Our experiments show very promising results: a high precision with relatively high recall in linear runtime performance. Furthermore, this work offers novel insights into the predicate groups that automatically accrue loosely as generic semantification patterns for semantification of scholarly knowledge spanning 44 research fields.

Citations (1)

Summary

We haven't generated a summary for this paper yet.