Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

2nd Place Solution to Google Landmark Retrieval 2020 (2210.01624v1)

Published 11 Jul 2022 in cs.CV

Abstract: This paper presents the 2nd place solution to the Google Landmark Retrieval Competition 2020. We propose a training method of global feature model for landmark retrieval without post-processing, such as local feature and spatial verification. There are two parts in our retrieval method in this competition. This training scheme mainly includes training by increasing margin value of arcmargin loss and increasing image resolution step by step. Models are trained by PaddlePaddle framework and Pytorch framework, and then converted to tensorflow 2.2. Using this method, we got a public score of 0.40176 and a private score of 0.36278 and achieved 2nd place in the Google Landmark Retrieval Competition 2020.

Summary

We haven't generated a summary for this paper yet.