Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Twisted conjugacy in residually finite groups of finite Prüfer rank (2210.00591v1)

Published 2 Oct 2022 in math.GR, math.DS, and math.RT

Abstract: Suppose, $G$ is a residually finite group of finite upper rank admitting an automorphism $\varphi$ with finite Reidemeister number $R(\varphi)$ (the number of $\varphi$-twisted conjugacy classes). We prove that such $G$ is soluble-by-finite (in other words, any residually finite group of finite upper rank, which is not soluble-by-finite, has the $R_\infty$ property). This reduction is the first step in the proof of the second main theorem of the paper: suppose, $G$ is a residually finite group of finite Pr\"ufer rank and $\varphi$ is its automorphism with $R(\varphi)<\infty$; then $R(\varphi)$ is equal to the number of equivalence classes of finite-dimensional irreducible unitary representations of $G$, which are fixed points of the dual map $\widehat{\varphi}:[\rho]\mapsto [\rho\circ \varphi]$ (i.e., we prove the TBFT$_f$, the finite version of the conjecture about the twisted Burnside-Frobenius theorem, for such groups).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.