Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DFA: Dynamic Feature Aggregation for Efficient Video Object Detection (2210.00588v1)

Published 2 Oct 2022 in cs.CV

Abstract: Video object detection is a fundamental yet challenging task in computer vision. One practical solution is to take advantage of temporal information from the video and apply feature aggregation to enhance the object features in each frame. Though effective, those existing methods always suffer from low inference speeds because they use a fixed number of frames for feature aggregation regardless of the input frame. Therefore, this paper aims to improve the inference speed of the current feature aggregation-based video object detectors while maintaining their performance. To achieve this goal, we propose a vanilla dynamic aggregation module that adaptively selects the frames for feature enhancement. Then, we extend the vanilla dynamic aggregation module to a more effective and reconfigurable deformable version. Finally, we introduce inplace distillation loss to improve the representations of objects aggregated with fewer frames. Extensive experimental results validate the effectiveness and efficiency of our proposed methods: On the ImageNet VID benchmark, integrated with our proposed methods, FGFA and SELSA can improve the inference speed by 31% and 76% respectively while getting comparable performance on accuracy.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yiming Cui (80 papers)
Citations (8)