Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grouped self-attention mechanism for a memory-efficient Transformer (2210.00440v2)

Published 2 Oct 2022 in cs.LG and cs.AI

Abstract: Time-series data analysis is important because numerous real-world tasks such as forecasting weather, electricity consumption, and stock market involve predicting data that vary over time. Time-series data are generally recorded over a long period of observation with long sequences owing to their periodic characteristics and long-range dependencies over time. Thus, capturing long-range dependency is an important factor in time-series data forecasting. To solve these problems, we proposed two novel modules, Grouped Self-Attention (GSA) and Compressed Cross-Attention (CCA). With both modules, we achieved a computational space and time complexity of order $O(l)$ with a sequence length $l$ under small hyperparameter limitations, and can capture locality while considering global information. The results of experiments conducted on time-series datasets show that our proposed model efficiently exhibited reduced computational complexity and performance comparable to or better than existing methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.