Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Social and environmental impact of recent developments in machine learning on biology and chemistry research (2210.00356v1)

Published 1 Oct 2022 in cs.CY and cs.LG

Abstract: Potential societal and environmental effects such as the rapidly increasing resource use and the associated environmental impact, reproducibility issues, and exclusivity, the privatization of ML research leading to a public research brain-drain, a narrowing of the research effort caused by a focus on deep learning, and the introduction of biases through a lack of sociodemographic diversity in data and personnel caused by recent developments in machine learning are a current topic of discussion and scientific publications. However, these discussions and publications focus mainly on computer science-adjacent fields, including computer vision and natural language processing or basic ML research. Using bibliometric analysis of the complete and full-text analysis of the open-access literature, we show that the same observations can be made for applied machine learning in chemistry and biology. These developments can potentially affect basic and applied research, such as drug discovery and development, beyond the known issue of biased data sets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Daniel Probst (7 papers)
Citations (1)