Papers
Topics
Authors
Recent
2000 character limit reached

Integrating Conventional Headway Control with Reinforcement Learning to Avoid Bus Bunching

Published 1 Oct 2022 in cs.MA | (2210.00201v1)

Abstract: Bus bunching is a natural-occurring phenomenon that undermines the efficiency and stability of the public transportation system. The mainstream solutions control the bus to intentionally stay longer at certain stations. Existing control methods include conventional methods that provide a formula to calculate the control time and reinforcement learning (RL) methods that determine the control policy through repeated interactions with the system. In this paper, we propose an integrated proximal policy optimization model with dual-headway (IPPO-DH). IPPO-DH integrates the conventional headway control with reinforcement learning, so that it acquires the advantages of both algorithms -- it is more efficient in normal environments and more stable in harsh ones. To demonstrate such an advantage, we design a bus simulation environment and compare IPPO-DH with RL and several conventional methods. The results show that the proposed model maintains the application value of the conventional method by avoiding the instability of the RL method in certain environments, and improves the efficiency compared with the conventional control, shedding new light on real-world bus transit system optimization.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.