Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hierarchies Everywhere -- Managing & Measuring Uncertainty in Hierarchical Time Series (2209.15583v1)

Published 30 Sep 2022 in stat.ME

Abstract: We examine the problem of making reconciled forecasts of large collections of related time series through a behavioural/Bayesian lens. Our approach explicitly acknowledges and exploits the 'connectedness' of the series in terms of time-series characteristics and forecast accuracy as well as hierarchical structure. By making maximal use of the available information, and by significantly reducing the dimensionality of the hierarchical forecasting problem, we show how to improve the accuracy of the reconciled forecasts. In contrast to existing approaches, our structure allows the analysis and assessment of the forecast value added at each hierarchical level. Our reconciled forecasts are inherently probabilistic, whether probabilistic base forecasts are used or not.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.